11 research outputs found

    What Java Developers Know About Compatibility, And Why This Matters

    Full text link
    Real-world programs are neither monolithic nor static -- they are constructed using platform and third party libraries, and both programs and libraries continuously evolve in response to change pressure. In case of the Java language, rules defined in the Java Language and Java Virtual Machine Specifications define when library evolution is safe. These rules distinguish between three types of compatibility - binary, source and behavioural. We claim that some of these rules are counter intuitive and not well-understood by many developers. We present the results of a survey where we quizzed developers about their understanding of the various types of compatibility. 414 developers responded to our survey. We find that while most programmers are familiar with the rules of source compatibility, they generally lack knowledge about the rules of binary and behavioural compatibility. This can be problematic when organisations switch from integration builds to technologies that require dynamic linking, such as OSGi. We have assessed the gravity of the problem by studying how often linkage-related problems are referenced in issue tracking systems, and find that they are common

    Contracts in the Wild: A Study of Java Programs (Artifact)

    Get PDF
    This artefact contains a dataset of open-source programs obtained from the Maven Central Repository and scripts that first extract contracts from these programs and then perform several analyses on the contracts extracted. The extraction and analysis is fully automated and directly produces the tables presented in the accompanying paper. The results show how contracts are used in real-world program, and how their usage changes between versions and within inheritance hierarchies

    Contracts in the Wild: A Study of Java Programs

    Get PDF

    Self-Adaptation in Industry: A Survey

    Full text link
    Computing systems form the backbone of many areas in our society, from manufacturing to traffic control, healthcare, and financial systems. When software plays a vital role in the design, construction, and operation, these systems are referred as software-intensive systems. Self-adaptation equips a software-intensive system with a feedback loop that either automates tasks that otherwise need to be performed by human operators or deals with uncertain conditions. Such feedback loops have found their way to a variety of practical applications; typical examples are an elastic cloud to adapt computing resources and automated server management to respond quickly to business needs. To gain insight into the motivations for applying self-adaptation in practice, the problems solved using self-adaptation and how these problems are solved, and the difficulties and risks that industry faces in adopting self-adaptation, we performed a large-scale survey. We received 184 valid responses from practitioners spread over 21 countries. Based on the analysis of the survey data, we provide an empirically grounded overview of state-of-the-practice in the application of self-adaptation. From that, we derive insights for researchers to check their current research with industrial needs, and for practitioners to compare their current practice in applying self-adaptation. These insights also provide opportunities for the application of self-adaptation in practice and pave the way for future industry-research collaborations.Comment: 43 page

    Viewport for Component Diagrams

    No full text
    This paper describes a viewport technique for use in the visualization of large graphs, e.g. UML component diagrams. This technique should help to work with complex diagrams (hundreds or thousands of components) by highlighting details of the important parts of the diagram and their related surroundings without losing the global perspective. To avoid visual clutter it uses clusters of interfaces and components
    corecore